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During the last decade CCD technology was successfully implemented in professional/
industrial and consumer applications. Due to an everincreasing variety of devices covering
HDTV-sensors, low-cost image sensors or application-specific imagers, there is a need for
technical innovations as well as for a reduction of development cycles. As a consequence, the
simulation of the highly complex integrated devices prior to production is of importance.
Moreover, the understanding of sensor artifacts or tolerances of sensor parameters can be
supported.

Since electrical and optical sensor characteristics often require compromises caused by
conflicting material properties, the optimization of both sensor aspects is of great interest. The
topology of the small CCD-pixel structures as well as the electrical potentials require two- and
even three-dimensional simulations. One major aspect to increase the signal-to-noise-ratio is
the improvement of the light sensitivity of the CCD image sensor. The optoelectronic model
combines a Monte-Carlo-based optical simulation using the new simulator HELIOS and an
electrical device simulation based on the finite element method. The model is applied to frame
transfer image sensors with vertical antiblooming [1,2].
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weighting the number of photons of the Monte-Carlo simulation. The non-planar three-
dimensional geometry is created by joining together simple geometric objects (block, wedge,
tetrahedron) as illustrated in figure 2 where the absorption coordinates as a result of a
HELIOS-simulation for a simple test structure are shown.

Figure 2: The points within the 3D test structure represent the absorption coordinates of the photons as simulated with
HELIOS. The photons enter the test structure with an aperture angle of 10 degrees.. The projection of the simulation results
in the xy-plane shows the absorption and reflection processes.

After passing the sensor topology the conversion of the photons to charge carriers is simulated
by taking into account the corresponding silicon material parameters. As an example the two-
dimensional distribution of generated electrons for a two-dimensional simulation of on-chip-
lens structures shown in figure 3.
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Figure 3: Distribution of the photogenerated electrons for a two-dimensional CCD pixel structure. The influence of the

different microlens structures is shown for an illumination of the whole pixel with photons of A=500 nm. (simulators:
HELIOS, MEDICI).

Device Simulation

According to figure 1 the photogenerated electrons have to be collected in the CCD potential
well in order to contribute to the pixel information. The 3D state-of-the-art device simulator
DAVINCI [3], has been used to determine the collection efficiency which strongly depends on
the pixel geometry, the doping profiles and the applied potentials. Simulations have also been
performed in two dimensions by using MEDICI [3].

In frame transfer sensors with vertical antiblooming the pixel geometry consists of a MOS
structure with a vertical n-p-n dopant profile. The doping concentrations and the applied
potentials result in a potential well where photogenerated electrons are collected. After



integration, the charge packet can be transported by changing gate potentials. A (half) pixel of
the buried-channel device as simulated with DAVINCI is shown in figure 4. The charge
packet is placed underneath the integrating polysilicon gate, while the blocking gates together
with the lateral channel stop regions prevent charge flow to neighbouring pixels. On-state
device simulations for electrons - potential changes caused by holes have not yet been
included - have been performed in two ways to calculate the quantum efficiency [4]:

a) The photogenerated electrons are placed into the silicon substrate at the positions simulated
by HELIOS. The electron flow - as simulated with DAVINCI - will be directed towards the
potential well or the n-type substrate of the sensor device. The quantum efficiency is then
given by the number of electrons collected in the pixel potential well divided by the
corresponding number of incoming photons.

b) The collection efficiency for a
given device geometry is simulated
prior to the HELIOS-simulation by
placing a small charge packet at a
defined position in the 3D silicon
structure. The  transient device
simulation yields the capture
probability for the given coordinate.
This procedure is repeated for the
whole device, resulting in a 3D
collection efficiency table. Thus the
results of HELIOS can be directly
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Figure 4: Simulation region of a (haif) CCD-pixel for the 3D device : : ;
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structure beneath the integrating electrode. The polysilicon gates on top device simulations.
of the structure have "windows" for an improved blue sensitivity.

Typical variations in the results for the two simulation models are about 2 percent quantum
efficiency. Preliminary comparisons with measurements (spectral sensitivity for the whole
pixel) show agreement within about 3 percent quantum efficiency.

Applications

The Monte-Carlo method (HELIOS) combined with device simulations - or reduced data from
device simulation results - offers a high flexibilty for applications. The influence of pixel
layout, doping profiles, applied potentials or materials can be examined as a function of the
position, angle and wavelength of the incoming light. Moreover, the spectral sensitivity of the
total pixel as an important device paramter can be determined. As an example, figure 5 shows
results of a simulation for a four-phase CCD cell (method a). The charge collection efficiency
- simulated by DAVINCI for the corresponding coordinates given by HELIOS - decreases as a
function of wavelength due to the relation of the increasing absorption depth and the potential
well, while the absorption processes in the polysilicon structures are less significant for longer
wavelengths. Both aspects result in the typical QE-characteristic with its maximum at around
500 nm.
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The quantum efficiency of a CCD pixel has been
simulated according to fig. 1. Note that the transmission and
absorption probability is related to the defined simulation region.
The charge collection efficiency is simulated by DAVINCI for the
given absorption coordinates calculated by HELIOS.
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Other examples (fig. 6) show the
variations of sensitivity within a pixel
due to the poly silicon gates and the
influence of reducing the thickness of
the poly silicion gates.

Moreover, first simulations with light
spots in horizontal and vertical
positions as an input for MTF-
calculations and optical crosstalk
between neighbouring pixels as a
function of the angle of the incident
photons have been performed.
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Figure 6 : The quantum efficiency QE has been simulated for different two-dimensional planes within a pixel (left). In the
upper part the top view of the corresponding CCD structure with poly silicon gates is shown. The QE is simulated for a
CCD pixel with polysilicon gates of different thickness (right).
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