
Figure 2: Algorithm delivering

parallel CRC equations

for every bit in

checksum

parallel equations

yes

remove redundant

coefficients

 trace coefficient until

xor operation / initial

value

collect coefficients

all coefficients traced

to initial value?

no

Enhanced Reliability Design Automation Methodology

considering the Generation of Parallel CRC Modules based on

arbitrary CRC Polynomials and unlimited Data-Word Widths

Timo Brenningmeyer

University of Applied Sciences Osnabrueck

Laboratory of Micro- and Optoelectronics

Albrechtstr. 30, D-49076 Osnabrueck

Timo.Brenningmeyer@fh-osnabrueck.de

Ralf Göttsche

Intel GmbH

Theodor-Heuss-Straße 7,

D-38122 Braunschweig

Ralf.Goettsche@intel.com

Prof. Dr. Arno Ruckelshausen

University of Applied Sciences Osnabrueck

Laboratory of Micro- and Optoelectronics

Albrechtstr. 30, D-49076 Osnabrueck

A.Ruckelshausen@fhos.de

Abstract

Presentation of an enhanced design flow with automated

generation of high performance and parallel CRC modules

based on user-defined CRC polynomials and unlimited data

word width.

1. Introduction

This paper describes an enhanced design flow providing

parallel HDL CRC1 modules for high performance data

paths. The algorithm generating the parallel equations is

implemented in a tool that integrates into the standard

design automation flow to offer the best possible usability

and efficiency.

CRC modules are usually implemented as linear feedback

shift registers (LFSR) handling serial data streams as shown

in figure 1. To calculate a checksum (black) for a n-bit data

word, n clock cycles are needed. Each row in the table in

figure 1 represents one calculation step (clock cycle). The

starting point for parallel CRC calculations are the data

word (grey) and the initial value of the register (light grey).

Figure 1: Serial CRC operation

Yi et al. ([1]) have developed an advanced algorithm which

generates highly optimized results regarding the number of

logic levels in the data path. Due to complex algorithmic

operations it is difficult to implement. In [2], a parallel CRC

function is described that focuses on generic applicability

and does not require mathematical knowledge of the user. It

1 Hardware Description Language (HDL) Cyclic Redundancy Check (CRC)

is a very efficient and easy-to-use methodology to generate

and implement parallel CRC circuits. But for large data-

words, the area and critical path delay achieved by logic

synthesis do not even match relaxed constraints.

The following sections describe an easy-to-use automated

approach to generate highly optimized parallel CRC

modules.

2. Parallel CRC generation methodology

The algorithm establishing parallel equations is based on

the serial CRC operation shown in figure 1. For a parallel

calculation of a CRC checksum, only the data word and the

initial value of the CRC register are needed.

The operation of the algorithm is illustrated in figure 2.

Each bit in the

checksum is traced

back in the serial

calculation steps

shown in figure 1.

Every time a xor

operation affects the

bit or the initial value

is reached, the

particular coefficients

are added to the

equation. This

operation is repeated

until all coefficients

that were written to

the equation are

belonging to the

initial value or the

data word.

The resulting equa-

tions contain multiple

redundant co-

efficients that are

eliminated according

to the logical axioms

for exclusive-or oper-

ations (𝑐1⨁𝑐1 = 0)

to achieve optimized

synthesis results.

Instead of executing these optimizations at the end of the

generation, it is implemented in the iterative operation

described above in order to reduce run time and memory

usage of the tool.

1 + 𝑥 + 𝑥4

+ +

1 0 0 0 0 1

2 1 1 0 0 0
3 0 1 1 0 0

4 0 0 1 1 0

5 1 1 0 1 1
6 0 1 1 0 1

7 1 1 1 1 0

8 1 0 1 1 0

 1 0 0 1

 𝑑𝑎𝑡𝑎: 1000 1100 data initial value
 𝑝𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙: 𝑥4 + 𝑥 + 1 checksum

Figure 5: Location of

CRC-optimizer in design

flow

highlevel

architecture

specification

RTL code

CRC-

optimizer

verification &

review

further

design flow

micro-

architecture

specification

RTL coding

phase

3. Parallel CRC netlist generator

The algorithm mentioned above is implemented in a Perl

based tool to provide an automated generation of parallel

HDL CRC modules. The user interface is based on shell

commands to enable an automated execution.

CRC-optimizer
parallel HDL

CRC module

data word width

polynomial

Figure 3: CRC-optimizer tool

The tool delivers the desired parallel CRC Verilog netlist

and takes the data word width and the polynomial as input

(see figure 3). Additionally, a testcase for verification

against a reference serial CRC module is generated to

enable the user to assure proper functionality.

The run time of the generation flow increases exponentially

with the data word width (see table 1). For most common

needed data word widths (<1024) the run time suits the

expectations. Possible requests for larger data words would

justify further optimization of the algorithm.

data word

width [bit]

run

time [s]

levels of logic

(input to register)

area

(normalized)

8 0 4 1,0

16 0 3 1,4

32 0 4 2,7

64 1 4 4,5

128 1 6 7,2

256 4 6 12,0

512 22 11 24,7

1024 164 8 45,4

2048 1296 15 85,9

4096 10053 16 141,0

Table 1: Tool run time and synthesis results

Synthesis of the generated parallel CRC modules shows

that the critical path length increases slowly when

increasing the data word width (see table 1 and figure 4).

In addition, the slowly growing area also demonstrates the

quality of optimization reached by the tool.

Even when reaching very large data word widths (such as

4096 bit), the critical path does not exceed reasonable

lengths (16 levels of logic).

Figure 4: Area and logic levels of parallel CRC modules

4. Integration into design flow

The CRC-optimizer tool

integrates into the design

flow parallel to the RTL

coding phase. The

generated CRC HDL

netlists are instantiated in

the RTL description of the

design. The HDL netlists

are realized in Verilog.

The tool is part of the

standard iteration flow

that is located prior to

synthesis and physical

implementation (see

figure 5).

Due to the option of

executing the tool

automatically, no severe

changes to the standard

flow are necessary.

Furthermore the easy-to-

use interface enables very

flexible and efficient

applications.

5. Conclusion

In this paper a methodology for the automatic generation of

parallel CRC Verilog netlists is described.

The CRC-optimizer tool provides optimized parallel CRC

Verilog netlists that show very good characteristics

regarding synthesis.

The tool was seamlessly integrated into the existing

standard design flow.

Future plans include an improvement of the algorithm to

achieve linear growth of the run time reliant on the data

word width.

6. References

[1] H. Yi, J. Song, C. Park, and S. Park, “Parallel crc logic

optimization algorithm for high speed communication

systems”, ICCS 2006, pages 1–5, October 2006.

[2] M. Sprachmann, “Automatic generation of parallel crc

circuits”, IEEE Design & Test of Computers, pages

108–114, May-June 2001.

[3] T.-B. Pei, C. Zukowski, “High-speed parallel CRC

circuits in VLSI”, IEEE Transactions on

Communications, pages 653–657, April 1992.

[4] G. Campobello, G. Patane, M. Russo, “Parallel CRC

realization”, IEEE Transactions on Computers, pages

1312 – 1319, Oct. 2003.

Acknowledgments

The author would like to thank Norbert Förster for his

knowledgeable teaching and Stefan Kuhnert for his

expertise support during synthesis.

1

21

41

61

81

101

121

141

161

0

5

10

15

20

4 32 256 2048

ar
e

a
o

f
m

o
d

u
le

 [
n

o
rm

al
iz

e
d

]

le
ve

ls
 o

f
lo

gi
c

data word width

levels of logic

area

