Statistics

Fakult?t

Fakult?t Wirtschafts- und Sozialwissenschaften (WiSo)

Version

Version 1 vom 15.01.2025.

Modulkennung

22B0753

Niveaustufe

Bachelor

Unterrichtssprache

Englisch

ECTS-Leistungspunkte und Benotung

5.0

H?ufigkeit des Angebots des Moduls

Winter- und Sommersemester

Dauer des Moduls

1 Semester

 

 

Kurzbeschreibung

This course is an intensive introduction to statistics aimed at preparing students for conducting a study in a real-world setting. The course provides the theoretical and technical details of various statistical methods, and serves as a tool to assist in all phases of the scientific process of statistical data analysis from data collection, via determining appropriate methods and statistical computing, to clearly communicating study outcomes.

Lehr-Lerninhalte

1 Introduction to statistics
1.1   Key concepts
1.2   Qualitative and quantitative variables
1.3   Statistical software overview
1.4   Introduction to selected statistical software 

2 One-dimensional frequency distribution 
2.1   Empirical distribution function
2.2   Measures of location
2.3   Measures of scale
2.4   Graphical representation
2.5   Economic applications 

3 Two-dimensional frequency distribution
3.1   Two-dimensional frequency tables
3.2   Marginal and conditional distributions
3.3   Contingency tables
3.4   Measures of association
3.5   Economic applications 

4 Correlation and regression
4.1   Correlation analysis
4.2   Simple linear regression
4.3   Multiple linear regression
4.5   Economic applications 

5 Basics of probability theory
5.1   Key concepts
5.2   Conditional probability, independence and Bayes’ rule
5.3   Event trees
5.4   Economic applications 

6 Probability distributions
6.1   Probability distributions for discrete random variables
6.2   Probability distributions for continuous random variables
6.3   Economic applications 

7 Parameter estimation
7.1   Key concepts
7.2   Confidence intervals for the mean, proportion value and the variance
7.3   Economic applications 

8 Hypothesis testing
8.1   Key concepts
8.2   One-sample tests
8.3   Two-sample tests
8.4   Economic applications 

Gesamtarbeitsaufwand

Der Arbeitsaufwand für das Modul umfasst insgesamt 150 Stunden (siehe auch "ECTS-Leistungspunkte und Benotung").

Lehr- und Lernformen
Dozentengebundenes Lernen
Std. WorkloadLehrtypMediale UmsetzungKonkretisierung
30VorlesungPr?senz-
30?bungPr?senz-
Dozentenungebundenes Lernen
Std. WorkloadLehrtypMediale UmsetzungKonkretisierung
30Veranstaltungsvor- und -nachbereitung-
20Hausaufgaben-
20Literaturstudium-
20Prüfungsvorbereitung-
Benotete Prüfungsleistung
  • Klausur oder
  • Portfolio-Prüfungsleistung
Bemerkung zur Prüfungsart

PFP comprises a total of 100 points and consists of a homework assignment (HA) and a one-hour written examination (K1). Both elements are assigned 50 points.

Prüfungsdauer und Prüfungsumfang

Written examination: in accordance with the valid study regulations

Homework assignment as part of the PFP: approx. 15-20 pages

The requirements are specified in the respective lectures.

Empfohlene Vorkenntnisse

Arithmetic

Wissensverbreiterung

Students distinguish the core areas of statistics. They can explain and illustrate the underlying ideas of specific methods and their principal areas of application. 

Wissensvertiefung

Students can justify the method selection, use software to do statistics, provide a comprehensive result interpretation, verify hypotheses, present the results, and summarize the outcomes in an integrative manner.

Wissensverst?ndnis

Students are able to critically reflect issues around the data.  They can critically evaluate the collected datasets, statistical methods and their outcomes. They can also discuss their outcomes through theoretical- and practice-relevant arguments.

Nutzung und Transfer

Students are able to transfer their knowledge to real-world case studies including summary statistics calculation, uni- and bi-variate frequency analysis, simple and multiple regression analysis, basic forecast, event tree analysis, parameter estimation, hypothesis testing, interpretation and visualisation of results, and the use of appropriate statistical software.

Wissenschaftliche Innovation

Students are able to formulate research questions and hypotheses, select appropriate methodology, undertake research, handle data issues, solve statistical problems and present outcomes. They are able to justify their decisions by means of statistical methods and comprehensive analysis.

Kommunikation und Kooperation

Students can present, visualise and communicate the analysis outcomes in oral presentations and in comprehensible written reports.

Wissenschaftliches Selbstverst?ndnis / Professionalit?t

Students are able to critically reflect, question, and communicate the potential and limitations of statistical methods in applied analyses. They are aware of basic data protection issues.

Literatur

Chapman C & McDonnell Feit E (2015) R for Marketing Research and Analytics (2015th ed.), New York, NY, Springer.

Field A, & Miles J (2012) Discovering Statistics Using R. London, Thousand Oaks, Calif, Sage Publications Ltd.

McClave J , Benson G, & Sincich T (2021) Statistics for Business and Economics: Pearson New International Edition (14th ed.), Pearson.

Zusammenhang mit anderen Modulen

This module prepares students for data-based further studies in any subject area.

Verwendbarkeit nach Studieng?ngen

  • International Management
    • International Management, B.A. (01.09.2024)

  • Internationale Betriebswirtschaft und Management
    • Internationale Betriebswirtschaft und Management, B.A. (01.09.2024)

  • Betriebswirtschaft und Management - WiSo
    • Betriebswirtschaft und Management, B.A. (01.09.2024) WiSo

  • Betriebswirtschaft im Gesundheitswesen
    • Betriebswirtschaft im Gesundheitswesen, B.A. (01.09.2024)

  • Internationale ?konomie und Nachhaltigkeit
    • Internationale ?konomie und Nachhaltigkeit B.A. (01.09.2024)

    Modulpromotor*in
    • Markovic-Bredthauer, Danijela
    Lehrende
    • Markovic-Bredthauer, Danijela